313 research outputs found

    The burden of chronic respiratory diseases in adults in Nepal:A systematic review

    Get PDF
    While chronic lung disease causes substantial global morbidity and mortality, global estimates have primarily been based on broad assumptions. Specific country data from low-income countries such as Nepal are limited. This review assessed primary evidence on chronic respiratory disease burden among adults in Nepal. A systematic search was performed in June 2019 (updated May 2020) for studies through nine databases. High levels of heterogeneity deemed a narrative synthesis appropriate. Among 27 eligible studies identified, most were low-moderate quality with cross-sectional and retrospective study design. Chronic lung diseases identified were chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis and restrictive lung diseases. Studies were categorised as: (i) community-based, (ii) hospital-based and (iii) comorbidity-related and disease burden. Reported disease prevalence varied widely (COPD, 1.67–14.3%; asthma, 4.2–8.9%). The prevalence of airflow obstruction was higher among rural dwellers (15.8%) and those exposed to household air pollution from domestic biomass burning as opposed to liquid petroleum gas users (Odds Ratio: 2.06). Several comorbidities, including hypertension and diabetes mellitus added to the disease burden. The review shows limited literature on lung disease burden in Nepal. Publications varied in terms of overall quality. Good quality research studies with prospective cohorts related to respiratory conditions are required

    Vertical structure of a supernova-driven turbulent magnetized ISM

    Full text link
    Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority (\approx 90 %) of the mass is contained in thermally-stable temperature regimes of cold molecular and atomic gas at T < 200 K or warm atomic and ionized gas at 5000 K < T < 10^{4.2} K, with strong peaks in probability distribution functions of temperature in both the cold and warm regimes. The 200 - 10^{4.2} K gas fills 50-60 % of the volume near the plane, with hotter gas associated with supernova remnants (30-40 %) and cold clouds (< 10 %) embedded within. At |z| ~ 1-2 kpc, transition-temperature (10^5 K) gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold (< 200 K) regime with a corresponding increase in the fraction of warm (~ 10^4 K) gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from ~ 30 Myr in the T < 200 K gas to ~ 100 Myr in the 10^6 K gas, in line with predictions by Walters & Cox.Comment: Accepted for publication in ApJ. Replacement corrects an error in the observed CNM pressure distribution in Figure 15 and associated discussio

    Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer

    Get PDF
    We studied 2332 individuals with monoallelic mutations in MUTYH among 9504 relatives of 264 colorectal cancer (CRC) cases with a MUTYH mutation. We estimated CRC risks through 70 years of age of 7.2% for male carriers of monoallelic mutations (95% confidence interval [CI], 4.6%-11.3%) and 5.6% for female carriers of monoallelic mutations (95% CI, 3.6%-8.8%), irrespective of family history. For monoallelic MUTYH mutation carriers with a first-degree relative with CRC diagnosed by 50 years of age who does not have the MUTYH mutation, risks of CRC were 12.5% for men (95% CI, 8.6%-17.7%) and 10% for women (95% CI, 6.7%-14.4%). Risks of CRC for carriers of monoallelic mutations in MUTYH with a first-degree relative with CRC are sufficiently high to warrant more intensive screening than for the general population

    Neutrophil-derived miR-223 as local biomarker of bacterial peritonitis

    Get PDF
    Infection remains a major cause of morbidity, mortality and technique failure in patients with end stage kidney failure who receive peritoneal dialysis (PD). Recent research suggests that the early inflammatory response at the site of infection carries diagnostically relevant information, suggesting that organ and pathogen-specific “immune fingerprints” may guide targeted treatment decisions and allow patient stratification and risk prediction at the point of care. Here, we recorded microRNA profiles in the PD effluent of patients presenting with symptoms of acute peritonitis and show that elevated peritoneal miR-223 and reduced miR-31 levels were useful predictors of bacterial infection. Cell culture experiments indicated that miR-223 was predominantly produced by infiltrating immune cells (neutrophils, monocytes), while miR-31 was mainly derived from the local tissue (mesothelial cells, fibroblasts). miR-223 was found to be functionally stabilised in PD effluent from peritonitis patients, with a proportion likely to be incorporated into neutrophil-derived exosomes. Our study demonstrates that microRNAs are useful biomarkers of bacterial infection in PD-related peritonitis and have the potential to contribute to disease-specific immune fingerprints. Exosome-encapsulated microRNAs may have a functional role in intercellular communication between immune cells responding to the infection and the local tissue, to help clear the infection, resolve the inflammation and restore homeostasis

    Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort

    Get PDF
    Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression

    Two mini-Neptunes Transiting the Adolescent K-star HIP 113103 Confirmed with TESS and CHEOPS

    Full text link
    We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P=7.610303P=7.610303 d for HIP 113103 b and P=14.245651P=14.245651 d for HIP 113103 c) around the adolescent K-star HIP 113103 (TIC 121490076). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a \sim17.5 hour observation for the transits of both planets using ESA CHEOPS. We place 4.5\leq4.5 min and 2.5\leq2.5 min limits on the absence of transit timing variations over the three year photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp=1.8290.067+0.096RR_{p}=1.829^{+0.096}_{-0.067}\,R_{\oplus}, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp=2.400.08+0.10RR_{p}=2.40^{+0.10}_{-0.08}\,R_{\oplus} for HIP 113103 c, and close proximity of both planets to HIP 113103, it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST, HST, and Twinkle. It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population.Comment: 18 pages, 12 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Dynamic genome evolution in a model fern

    Get PDF
    The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology

    Influence of obesity-related risk factors in the aetiology of glioma

    Get PDF
    BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS: Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. RESULTS: No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. CONCLUSIONS: This study provides no evidence to implicate obesity-related factors as causes of glioma
    corecore